首页=万向注册平台=测速
首页=万向注册平台=测速
百事注册_百事官网平台app_注册下载官方版V1.2.9
作者:管理员    发布于:2024-03-06 16:44    文字:【】【】【
摘要:百事注册_百事官网平台app_百事注册下载官方版V1.2.9 仪器信息网纤维增强复合材料专题为您整合纤维增强复合材料相关的最新文章,在纤维增强复合材料专题,您不仅可以免费浏览纤维

  百事注册_百事官网平台app_百事注册下载官方版V1.2.9仪器信息网纤维增强复合材料专题为您整合纤维增强复合材料相关的最新文章,在纤维增强复合材料专题,您不仅可以免费浏览纤维增强复合材料的资讯, 同时您还可以浏览纤维增强复合材料的相关资料、解决方案,参与社区纤维增强复合材料话题讨论。

  CSTM发布《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准

  近日,中国材料与试验团体标准委员会(CSTM标准委员会)批准发布T/CSTM00653—2022《纤维增强聚合物基复合材料超低温力学性能试验方法》团体标准,并将于2022年8月27日起正式实施。该团体标准规定了纤维增强聚合物基复合材料超低温力学性能试验的试验原理、试验设备、试样、试验步骤、试验结果和试验报告;适用于连续纤维增强聚合物基复合材料在-183℃~-269℃超低温下进行拉伸、面内压缩、弯曲和剪切等力学性能试验,超出上述温度范围及树脂浇铸体和塑料的超低温力学性能试验可参照使用。该标准起草人:渠成兵、肖红梅、黄传军、刘玉、付绍云、刘德博、张健、左小彪、史汉桥、李元庆、矫维成、杨帆、蔡浩鹏、张红菊、陈超。起草单位:中国科学院理化技术研究所、北京玻璃钢研究设计院有限公司、北京宇航系统工程研究所、航天材料及工艺研究所、重庆大学、哈尔滨工业大学、武汉理工大学、国标(北京)检验认证有限公司、山东省标准化研究院。标准文本:标准下载链接:

  引言碳纤维增强复合材料(CFRP:CarbonFiberReinforcedPlastics)因其高比强度、高比刚性和良好的耐腐蚀性而广泛用于航空航天、国防工业和其他领域。然而CFRP属于典型难加工材料,尤其是制孔加工,CFRP构件为了与其他零部件装配通常要对其进行大量的制孔,传统制孔加工技术难以满足要求,这成为CFRP推广应用的瓶颈。为了研发高效高质量、低成本的CFRP制孔技术,南方科技大学吴勇波讲席教授团队的汪强博士后研究员等人利用岛津公司的inspeXioSMX-225CTFPDHR微焦点X射线CT系统,观察新技术斜螺旋铣削法(THM)和传统螺旋铣削法(CHM)所获得CFRP制孔加工质量。通过inspeXioSMX-225CTFPDHR微焦点X射线CT系统对两种不同方法CFRP制孔加工样品进行扫描成像,再使用VG软件对其数据进行比较分析,发现利用CHM获得孔的表面出现明显毛刺,而使用THM获得孔的表面非常光滑。这验证了斜螺旋铣削法这一新技术相比传统螺旋铣削法更有利于CFRP高质量制孔加工。论文链接:图1基于CHM和THM的加工孔的3D扫描图图2inspeXioSMX-225CTFPDHR微焦点X射线是通过微焦点CT扫描后的三维立体图像。无需特殊前处理,直接把样品放进inspeXioSMX-225CTFPDHRCT设备中直接扫描,测试速度快,短短几分钟就可以得出清晰的图像。岛津公司inspeXioSMX-225CTFPDHR是一款高性能微焦点X射线)。特点是检出器动态范围大,相当于1400万像素的输入分辨率,加之进一步改良过的高输出微焦点X射线发生器,完全颠覆了“无法在高电压输出设备上获得轻质材料的高清晰高对比度的图像”这一常识,能够获得大视野范围、高分辨率、高对比度的断面图像。无论是在研发的复合材料(GFRP、CFRTP),还是大型铝合金压铸件产品,这款仪器能够完成各种样品所需要的研究、开发和检查的实验。图3基于CHM和THM加工孔的3D扫描图(图片版权归IntJAdvManufTechnol所有)图3分别显示了CHM(θ=0°)和THM(θ=5°)加工孔的CT放大扫描结果。图像表明,CHM孔口处存在大量的毛刺,而在THM孔入口处很少出现毛刺现象,从而抑制了THM孔口的撕裂。使用CHM加工时,孔表面在90°时特别粗糙;与之形成对比的是,THM中所有孔表面都是光滑的。图4拟合CHM和THM加工孔的扫描3D图(图片版权归IntJAdvManufTechnol所有)图5CHM和THM加工孔CT横截面图(图片版权归IntJAdvManufTechnol所有)通过CT扫描CHM(θ=0°)和THM(θ=5°)获得的加工孔横截面(图5)。在CHM加工孔的入口和出口表面都发现了分层,这与THM加工的没有观察到分层的孔形成鲜明的对比。THM加工孔表面要比CHM好得多,这归功于在THM加工中,孔的出口加工是分阶段形成:在第一阶段,会生成直径小于所需直径的孔出口,随着加工进行,孔出口直径逐渐扩大到所需直径,从而完成第二阶段的孔出口加工。在这个过程中,第一阶段形成的孔出口分层可以在第二阶段孔加工中消除,从而实现孔出口的高质量加工。图6CHM和THM加工孔CT横截面图(图片版权归IntJAdvManufTechnol所有)图7THM加工孔CT展开图(a)和SEM图(b)(图片版权归IntJAdvManufTechnol所有)在图6和图7中,通过CT扫描后用专用图像处理软件把孔内表面展开,可以清晰的观察CHM(θ=0°)和THM(θ=5°)的孔内表面形貌。这一分析手段有利于观察分析被测物体内部结构,是本公司产品的优势之一。在CHM中,当90°时,可以看到粗糙的表面缺陷位于α=135°附近。但是在THM中,所有α角度的钻孔表面都是光滑的。最后通过SEM扫描验证缺陷位置。SMX-225CTFPDHR微焦点X射线CT系统扫描结果协助研究者验证了THM加工方法在CFRP制孔加工中显著优于CHM,为后续研究提供了准确的数据。

  引言自进入21世纪以来,科学技术对材料提出了越来越高的要求,碳纤维复合材料(CFRP)因其重量轻、强度高、耐腐蚀性强、弹性优良等特点,广泛应用于航天航空、汽车、电子电器、体育器材等领域,促使碳纤维复合材料行业快速发展。一方面CFRP广泛使用助推产业结构优化升级,实现绿色发展;另一方面CFRP的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进!复合材料的应用场景CFRP强度评估方法由各种ASTM标准规定。岛津试验机可以根据ASTM各种测试标准做出解决方案,例如符合“平面内剪切试验-双V形切口剪切法(ASTMD5379)的试验示例,以及符合各种标准的夹具。采用双V形切口试样进行平面内剪切试验,得到CFRP的平面内剪切强度、平面内剪切破坏应变和平面内剪切弹性模量。碳纤维复合材料的测试标准碳纤维复合材料(CFRP)目前主要应用于飞机与汽车制造业,其刚性是重要应用参考,岛津试验机可以根据JISK7074和JISK7084标准提供静态三点弯曲试验和高速冲击试验方案,且能获得精确获得试验数据。碳纤维是碳纤维增强塑料(CFRP)的重要组成部分,碳纤维的力学性能(拉伸强度/弹性模量)对复合材料物理性能有重要影响,岛津试验机系统可以对碳纤维及其复合材料进行拉伸试验,也可以配合高速摄像机实现从高时间分辨率的角度研究碳纤维布的破坏过程的可视化观察。使用X射线CT系统可以对试样中纤维的取向和空隙进行无损观察。这使得在进行测试之前能够观察内部状态,从而获得测试结果与内部结构紧密相关的数据。岛津试验机拥有一百多年的历史和丰富的产品线,不管是静态试验机还是动态试验机,可以满足各种客户的需求,且进行定制化的夹具设计。岛津公司提供了一系列用于分析、测试和检验评估的仪器和系统(从分析和测试预处理到数据分析),从而有助于解决从CFRP原材料开发到产品耐久性评估各个阶段的各种问题,为营造和谐绿色的发展做出贡献。

  根据美国ResearchAndMarkets1月25日发布的最新全球汽车工业用复合材料市场分析报告,全球汽车工业复合材料市场预计将从2020年的54亿美元增长到2025年的93亿美元,2020年至2025年之间的复合年均增长率(compoundannualgrowthrate,CAGR)为11.5%。对轻量化和节能汽车的需求以及电动汽车的新兴发展是推动汽车工业复合材料市场增长的主要因素,而提高OEM厂商对严格的政府排放控制法规的认识则是汽车复合材料市场增长的机会。但是,COVID-19疫情对汽车复合材料的负面影响对汽车行业市场增长产生了不利影响。就增强纤维类型而言:玻璃纤维复合材料仍然是汽车工业复合材料最大的细分市场。玻璃纤维具有强度、耐久性、柔韧性、稳定性、重量轻、耐热、耐温、防潮等优点,是汽车工业复合材料生产厂家的首选材料。例如,在汽车中,玻璃纤维可用于不同的应用,如车身底部系统、前端模块、甲板盖、保险杠横梁、发动机罩仪表板和风道,以及其他车身部件。但是在2020年至2025年预测期内,预计碳纤维复合材料价值和产量的复合年增长率最高。就应用结构件类型而言:车身结构是汽车工业复合材料的最大应用。放置在整体式车身外表面上的车身复合材料被称为车身外部零件。外部零件包括主要部件如保险杠、挡泥板、前端模块、门板和引擎盖等。在汽车工业中使用复合材料是一个新兴趋势,因为这些复合材料有助于实现高性能性能,如高刚度、轻量化和高强度重量比。使用复合材料制造的外部零件具有刚性,因此在发生事故时提供最小的损坏风险。复合材料也有助于减轻外部部件的重量,从而使整个车身的重量减轻,并使其更省油。外部零件位于车身外表面,由于暴露在恶劣环境和极端天气下,更容易磨损。在外部部件中使用复合材料,如挡泥板、发动机罩、保险杠横梁、行李厢盖和其他部件,增加了汽车的耐久性,确保了较长的使用寿命并降低了维护成本。就轻量化汽车的类型而言:非电动汽车仍然是汽车工业复合材料应用最大的车型,包括宝马、奥迪、雷诺、保时捷、大众、菲亚特克莱斯勒等众多车企,均在在其高端非电动汽车中使用复合材料。例如,保时捷GT3CupII车型制造了CFRP组装支架,而宝马和菲亚特克莱斯勒则在其轻型仪表盘支架以及阿尔法罗密欧4C跑车的整个底盘中使用碳纤维复合材料和玻璃纤维增强聚丙烯(PP)复合材料。德国汽车制造商已经开发出Rodeo概念车,这是一款基于经典保时捷911safari拉力赛车的全轮驱动碳纤维越野车。全球OEM采取的这些举措一直在推动汽车复合材料在非电动汽车中的应用。就汽车工业复合材料区域而言:欧洲是领先的汽车复合材料市场。欧洲汽车复合材料市场的增长是由该地区汽车行业中老牌汽车制造商的存在、工业扩张以及该地区汽车工业引进的工业4.0技术推动的。汽车工业是欧洲地区的主要产业之一,比其他任何地区都高。欧盟是全球最大的汽车生产国之一,该行业是研发领域最大的私人投资者,每年约投资574亿欧元,欧盟汽车工业的营业额占GDP的7%。

  复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。为进一步促进全国各地高校、科研院所、企业等相关从业人员进行表征与检测技术交流,仪器信息网于2021年6月8日成功举办了“复合材料性能表征与评价”主题网络研讨会,邀请领域内杰出专家和业内人士围绕会议主题带来精彩报告,并为参会人员搭建了网络互动平台进行学术交流。回放视频链接如下:报告时间报告主题报告嘉宾回放链接09:30--10:00固化与湿热条件对挖补复合材料层合板力学性能的影响程小全(北京航空航天大学航空科学与工程学院实验室主任/教授)链接10:00--10:30复合材料固化的热分析表征曾智强(德国耐驰仪器制造有限公司市场与应用副总经理)链接10:30--11:00聚乳酸基纳米复合材料的制备与结晶行为研究贾仕奎(陕西理工大学材料科学与工程学院系主任/副教授)链接11:00--11:30纤维增强树脂基复合材料基本力学性能测试与表征白瑞祥(大连理工大学力学系副教授/博士生导师)链接14:00--14:30复合材料破坏与强度预报黄争鸣(同济大学航空航天与力学学院教授)链接14:30--15:00聚合物基复合材料力学性能试验关键要素分析王斌(力试(上海)科学仪器有限公司总经理)链接15:00--15:30高温环境下防热复合材料力学性能测试仪器与装备张建海(吉林大学副教授/吉林省材料服役性能测试国际联合研究中心副主任)链接15:30--16:00环氧树脂复合材料的改性研究黄培(重庆大学航空航天学院讲师)不回放16:00--16:30纤维增强聚合物基复合材料拉伸性能试验方法陈新文(中国航发北京航空材料研究院高级工程师)链接

  2023年11月17日-18日,中国复合材料行业年会暨第五届碳纤维复合材料产业发展论坛在上海成功举办。万测作为国内知名的材料力学测试解决方案供应商参加了本次论坛。 论坛期间,万测展示了微机控制电子万能试验机、电液伺服疲劳试验机、复合材料试验机、复合材料落锤冲击试验机等产品及解决方案,与现场嘉宾共同探讨了未来复合材料行业的发展趋势和挑战。 万测微机控制复合材料试验机主要用于复合材料的拉伸、弯曲、压缩、剪切、裂纹扩展等力学性能测试。具有应力、应变、位移三种闭环控制方式,可求出最大载荷、抗拉强度、弯曲强度、压缩强度、剪切强度、弹性模量、断裂延伸率、泊松比等参数。根据国家标准及ISO、JIS、ASTM、DIN等国际标准进行试验和提供数据。 作为国家级专精特新重点“小巨人”企业,万测一直以来都关注着复合材料的发展,承担着为国内复合材料发展做出贡献的责任和义务。为了更好地服务行业,万测将继续加大复合材料力学测试领域的研发投入,为广大用户带来更多专业的测试解决方案。未来,随着复合材料行业的持续发展和创新,万测将继续发挥其专业优势和技术实力,为我国复合材料行业的繁荣发展做出更大的贡献。

  KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS展会信息界面是决定复合材料性能的关键因素,是复合材料研究领域的焦点问题。“2022复合材料界面论坛”重点聚焦碳纤维、芳纶纤维、聚酰亚胺纤维、碳纳米管纤维、玻璃纤维、陶瓷纤维、玄武岩纤维、植物纤维等高性能纤维增强复合材料的界面,主要围绕复合材料界面微观结构及其表征、界面微观力学、界面结构与界面行为之间的关系以及它们对材料宏观性能的影响等研究领域展开。KRÜSS诚邀您参加2022复合材料界面论坛会议时间:2022.8.11-12展位号:A03会议地址:宁波华侨温德姆至尊豪廷大酒店(浙江省宁波市海曙区柳汀街230号)典型应用通过接触角分析树脂和纤维浸润性树脂的表面张力分析通过表面能分析纤维和树脂的粘结强度基于OWRK模型的粘结效果评价等离子处理后表面能比较应用背景界面是决定复合材料性能的关键因素。树脂与纤维增强体的良好浸润是获得高质量复合材料界面的首要前提,对于树脂基复合材料而言,增强纤维与树脂基体之间的浸润性好坏对复合材料性能影响很大。一般来说,浸润性好、界面粘结强度就比较高。如果浸润性不好,界面上就容易留有空隙。因此,要制备高性能的复合材料,对增强材料的浸润性研究是十分必要的。

  中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACSNano》在线发表了该项研究成果。航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16gcm-3)、低热导率(0.03Wm-1K-1)和高压缩强度(0.93MPa)等性能。相关工作在Carbon2021,183上发表。在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6gcm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32Wm-1K-1,其比压缩强度(133MPag-1cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACSNano2022,16上发表。此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。图1.轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2.高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫

  导读随着科技发展的日新月异,汽车、航天、航空等工业对材料性能的要求越来越高,单一材料如金属、陶瓷、高分子材料几乎都难以胜任。若将不同性能特点的单一材料复合起来,取长补短,则能满足现代高新技术的需求。复合材料既能保持组成材料各自的优异特性,又具有组合后的新特性,如比强度和比模量高、抗疲劳和破断安全性良好、高温性能优良等。以汽车工业为例,在车身及主要零部件、汽车结构件、电动汽车高压电池组件等应用中,复合材料可减轻重量实现汽车轻量化,同时减少碳排放。在飞机工业中,以波音777为例,其机体结构中复合材料仅占到约11%,而且主要用于飞机辅件;但到波音787时,复合材料的使用出现了质的飞跃,不仅数量激增,而且开始用于飞机的主要受力件,如今,波音787的复合材料用量已占到结构重量的约50%。因此对于复合材料的研究,根据不同需求测试评估各种复合材料的力学性能,就显得尤为重要。今天,我们一起来看看岛津试验机在复合材料力学测试方面的夹具与应用。1ASTMD6641组合载荷压缩测试复合材料不同于以往的均质材料,具有各向异性,在承受载荷的应力主轴方向呈现出拉伸、压缩、弯曲、向内剪切、向外剪切或兼有上述动向的复杂受力情况。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行复合材料试验时,对于分别测量各断裂现象的试验方法的要求越来越高。例如根据标准ASTMD6641的组合载荷压缩(CLC)试验(如下图)是一种具有剪切和端面载荷组合的试验方法,提供了实现强度评估的同时进行弹性模量的测量。点击查看视频:开孔压缩强度测试碳纤维增强塑料(CFRP)以其强度高、重量轻等优点,在航空航天领域得到了广泛的应用。碳纤维具有优良的强度特性和高刚度特性,但在开孔时会损失很大的强度。复合材料零部件实际使用中,常需要开孔与别的部件连接。因此,飞机上使用的复合材料,必须对中心切出一个孔的试样的试验进行评估。我们根据ASTM-D6484对碳纤维塑料进行了开孔压缩试验。点击查看视频:型切口剪切测试为了减少试制次数,降低新产品开发的成本,计算机辅助工程(CAE)分析被广泛应用。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行CFRP试验时,对于分别测量各断裂现象的试验方法的要求越来越高。评价复合材料的试验方法有多种。其中,作为面内剪切试验方法,以纤维强化复合材料的纤维方向或织物层压材料为目标,在设有缺口的样片上取非对称的4个点加载弯曲负荷的Iosipescu法(ASTMD5379),以及在±45&ring 的层压材料上加载拉伸负荷的方法(ISO14129)最为普及。本次试验使用V-NotchedRailShear法(ASTMD7078),能够稳定进行面内剪切试验。另外,因样片的测量部位较大,可同时适用于无孔样片及短纤维系列CFRP层压材料的测量。点击查看视频:其他复合材料测试夹具展示结语岛津标准试验机,试验载荷从1N到600KN不等,可适应各种样品,如橡胶、塑料、复合材料、金属、木材、玻璃陶瓷等材料的板、棒、线、绳等样品。本文介绍了岛津试验机在复合材料测试中主要夹具。另外,岛津夹具设计团队还可以根据特殊需求和标准,设计、定制夹具,以满足复合材料行业客户需求,提高复合材料的研究深度和应用广度,同时助推产业结构优化升级,实现绿色发展。撰稿人:杨汉章本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士/p

  2022年7月19日,中国复合材料学会在北京学会会员之家组织开展了2021年度中国复合材料学会优秀博士学位论文评审会。根据《中国复合材料学会优秀博士学位论文评选条例》,经理事及相关单位推荐,通过资格审查、函审和会评,共有5篇论文获评优秀博士学位论文,5篇论文获提名奖。现将2021年度中国复合材料学会优秀博士学位论文及提名奖名单予以公示,公示期为2021年7月19日至2021年7月29日,共10天。公示期间,如有异议,可向中国复合材料学会实名反映,并提供联系方式和证明材料。评选结果见附件。联系人:靳鹏程电话:邮箱:.cn地址:北京市海淀区花园东路15号旷怡大厦3层附件:2021年度中国复合材料学会优秀博士学位论文名单姓名单位论文题目张博北京交通大学用于发汗冷却的碳化硅基多孔陶瓷的制备与性能表征付宇彤清华大学纤维增强树脂基复合材料宏细观工艺力学研究庄磊西北工业大学ZrC-SiC改性C/C复合材料及其表面硅基陶瓷涂层的研究王兵哈尔滨工业大学基于FFT方法的编织复合材料异形结构损伤失效研究昝宇宁中国科学技术大学(B4C+Al2O3)/Al高温中子吸收材料的制备与加工研究2021年度中国复合材料学会优秀博士学位论文提名奖名单姓名单位论文题目王晓东北京航空航天大学基于细观力学的复合材料裂纹扩展及失效分析方法研究梁超博西北工业大学石墨烯泡沫/环氧树脂复合材料可控制备及电磁屏蔽性能刘京彪哈尔滨工程大学形状记忆聚合物及其复合材料性能与热力学行为研究王帅哈尔滨工业大学层状钛基复合材料多尺度组织调控与力学行为研究韩俊伟天津大学用于致密储能的锂离子电池负极材料设计和可控制备

  2021年1月5日,广东省标准化协会发布实施《乘用车用碳纤维复合材料翼子板》团体标准。此举将促进国产乘用车翼子板质量规范和升级。翼子板是汽车车身上遮盖车轮的外饰件,因该部件形状及位置似鸟翼而得名。在汽车行驶过程中,翼子板可以起到防止行驶过程中车轮带起的砂石、泥浆等对轮毂和车厢底部的损坏,是轿车上比较典型的外覆盖件之一,质量要求高、成型难度大,一般选用成型性比较好,同时强度比较好、防腐性能较好的材料,材料厚度在满足抗凹性、刚度的前提下尽量选择薄的板材,降低整车重量。碳纤维复合材料是一种高性能新型材料,具有优异的比强度、比模量、耐腐蚀、抗疲劳性等优点。碳纤维增强塑料汽车翼子板相对于传统的钣金翼子板:1)可减重45%以上,轻量化效果显著,节能减排的优势明显;2)物理化学性能稳定,不易氧化生锈,耐腐蚀性强、寿命长;3)尺寸稳定性好,提高与翼子板相关的附件的匹配精度;4)较高的阻尼系数和疲劳强度极限,减震性能和抗疲劳性能强;5)特殊的纹理图案显示。随着中国汽车保有量不断增长,以及受主要消费群体年轻化、需求个性化等因素影响,以体现高端化、品质化、定制化趋势的碳纤维复合材料翼子板等汽车精品件引起越来越多人的认知与关注。目前,国内碳纤维复合材料翼子板生产企业主要为中小型企业,这些企业主要做高端汽车改装件的制造,并不能大批量生产。相比于国外的碳纤维复合材料汽车部件的发展,国内显得较为落后。而且,乘用车用碳纤维复合材料翼子板在国家标准、行业标准或地方标准上还是空白,生产企业多以客户的要求为依据制订自己的企业标准并组织生产,行业内因为缺乏标准的引导和规范,产品良莠不齐。为有效引导产业的良性持续发展,同时使用户在选择、使用产品的过程中有统一的标准进行参考和对比,促进产品质量和技术升级,充分保障消费者的权益。据此,广东亚太新材料科技有限公司、广州汽车集团股份有限公司汽车工程研究院、中国汽车工程研究院股份有限公司、深圳市标准技术研究院、广东亚太轻量化技术研究有限公司、北京汽车集团越野车有限公司、北京奔驰汽车有限公司、上海坤刚复材技术研究有限公司、广东省肇庆市质量计量监督检测所等单位联合起草了该标准。由上述单位专家和得力技术骨干组成的起草组对碳纤维复合材料翼子板产品现行市场状况、生产技术水平、应用领域、存在的急待解决的问题以及关联技术标准等进行了充分的调查研究,对部分技术指标在相关企业反复进行测试取得数据,并多次召开研讨会,对有关技术问题和指标进行深入研讨取得一致。《乘用车用碳纤维复合材料翼子板》团体标准立足于保障和提升汽车翼子板的质量和技术水平,对采用碳纤维增强环氧树脂基复合材料制作的乘用车翼子板的各个质量环节作了规范规定,包括规范性引用文件、术语和定义、技术要求、试验方法、检验规则、标志、包装、运输和贮存。技术要求包括一般要求、尺寸要求、外观质量、功能性要求等。质量技术指标既考虑先进性、前瞻性,又立足与现有生产技术水平相适应。其中,一般要求的指标与GB11566—2009《乘用车外部凸出物》和GB/T24550—2009《汽车对行人的碰撞保护》完全一致,外观及尺寸要求相较于GB/T27799—2011《载货汽车用复合材料覆盖件》的要求更严,产品核心技术指标之一的耐气候老化试验采用颜色变化的灰标度评定,评定办法与指标要求与ISO相关标准一致,抗石击试验在比美国汽车工程师协会(SAE)规定的气候温度更严苛的条件下效果相同。专家组评审认为,《乘用车用碳纤维复合材料翼子板》团体标准统一、规范了乘用车用碳纤维复合材料翼子板的技术质量要求,技术质量指标先进、适用,可为国产乘用车翼子板的升级换代提供技术支撑和满足市场需要,对推广应用高性能新型材料,实现乘用车部件翼子板技术质量升级具有促进作用。

  仪器信息网讯2019年5月7日,SAMPE中国2019年会暨第十四届先进复合材料制品、原材料、工装及工程应用展览会召开同期,作为重要分会场——复合材料性能表征和测试技术论坛成功举办。SAMPE中国2019展会入口一角借助SAMPE中国平台,该论坛由中国航发北京航空材料研究院发起并已成功举办了7届,与往届不同的是,本届(第8届)论坛由中国航发北京航空材料研究院首次与天氏欧森测试设备(上海)有限公司共同主办。邀请11位复合材料性能表征和测试技术领域专家依次分享精彩报告并现场交流互动。复合材料性能表征和测试技术论坛现场中国航发北京航空材料研究院高级工程师陈新文主持会报告人:清华大学航天航空学院王申博士报告题目:复合材料结构非接触测试技术及应用非接触测试是以光电、电磁等技术为基础,在不接触被测物体表面情况下,得到物体表面参数信息的测量方法。王申首先介绍了非接触测试技术的典型方法、特点等。接着分别重点介绍了基于3D扫描技术的物体形貌与损伤检测技术、数字图像相关方法(DIC)、基于红外热成像泄露定量测试方法、红外技术与数字图像相关技术结合等相关技术,包括基本测试原理、测试方法、实验装置等,并结合复合材料内部损伤检测、内部应力应变检测、飞行器结构在线健康检测等案例介绍了这些技术的相关应用。报告人:天津工业大学先进纺织复合材料教育部重点实验室郭玉路报告题目:含减纱点三维角联锁石英织物剪切性能试验研究郭玉路主要介绍了其关于三维角联锁石英织物剪切性能试验的相关研究研究,结果表明,含减纱点的三维角联锁石英织物的剪切性能会降低,且不同减纱方式对其剪切性能的影响不大。报告人:日本龙派公司首席官细川雅彦博士报告题目:多轴编复合材料的力学性能研究细川雅彦结合日本龙派公司在多轴编复合材料生产研发过程,介绍了系列相关力学性能的研究,研究表明,多轴编复合材料的抗拉强度与剪切角度无关,而抗拉模量则当剪切角为零度时最大。报告人:泰国拉贾马拉理工大学萨蒙曼尼姆朗教授报告题目:芳纶增强聚酰胺编制复合材料力学性能研究关于芳纶增强聚酰胺编制复合材料的力学性能研究,萨蒙曼尼姆朗首先介绍了样品的制备和前处理方法。接着利用微滴包埋拉出法测定了复合材料界面剪切强度,结果表明,该样品进行去油处理后,其界面剪切强度可以提高约26%。而通过对芳纶增强聚酰胺编制复合材料拉伸试验表明,表面预处理可以将样品的拉伸强度提升9.1%,成型时间为40分钟时比成型时间8分钟的拉伸强度高18.1%。报告人:北京理工大学刘刘教授报告题目:有限元模型修正结合数字相关技术在复合材料本构参数识别中的应用研究由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。而材料表征技术、无损检测技术、疲劳机构分析及失效分析等测试技术,可以有效的为复合材料的安全使用寿命提供保障。刘刘主要介绍了基于数字图像相关技术(DIC)和有限元模型修正(FEMU)相结合的方法,及在复合材料本构参数识别中的应用。研究结果表明,通过对高孔隙率陶瓷基复合材料的拉伸和v型缺口剪切试验,提取了具有参数的复杂本构模型。且该方法可以扩展全场变形测量的能力,以识别疲劳损伤的演化过程。报告人:赛默飞世尔科技大客户经理蔡传忠报告题目:DVC技术在生物力学变化的体积表征中的应用数字体积相关(DigitalVolumeCorrelation,简称DVC)技术能测量出三维图像变形前后,任意位置的采样点的位移和应变,可用于分析物体内部的三维变形情况。该技术相关研究发表文章量也在逐年增长。蔡传忠主要介绍了DVC技术的最新进展、实验设计方法等,接着讲解了赛默飞Amira-Avizo软件在DVC方面的应用,该软件提供高性能3D可视化和分析解决方案,适用于科学和工业数据。最后结合在生物学、地质学、化学等领域的应用实例讲解了Amira-Avizo在DVC方面实际应用方案。报告人:京都工艺纤维大学西谷圭吾博士报告题目:注射工艺制造碳纤维复合材料界面性能评价西谷圭吾在报告中表示,PP和PC复合材料的界面性能可以通过100摄氏度热水处理碳纤维得以提高。纤维取向和残余纤维长度两个因素对注塑产品拉伸强度的影响要大于对其界面剪切强度的影响。而关于注塑成型的界面剪切强度的计算,KellyTyson方程计算相比微滴包埋拉出测试法更加精确。报告人:梅特勒-托利多技术应用顾问陈成鑫报告题目:热分析技术在复合材料中的应用常用热分析手段包括DSC、TGA、TMA、DMA等,陈成鑫首先按照检测项目不同分类,逐一介绍了此四种热分析技术在复合材料表征中的推荐应用情况。接着分别以案例形式介绍了四种热分析技术的应用方案,包括DSC技术用于环氧树脂固化度的测试、评价固化促进剂的影响、复合材料的后固化等 TGA技术用于玻璃纤维含量、固化产品质量的鉴定等 TMA技术用于纤维方向的影响、PCB爆板时间、凝胶时间等 DMA技术用于通过Tg进行质量监控、聚合物-填料体系的分析、取向的影响等。报告人:天氏欧森测试设备(上海)有限公司大客户经理黄安超报告题目:视频引伸计在复合材料测试中的应用黄安超首先介绍了聚合物基复合材料(PMC)和纤维增强材料(FRP)两种材料测试的国际标准情况,包括椎板/层板相关标准近40项、结构相关标准近20项、夹层结构相关标准近10项等。接着分别介绍了PMC/FRP平面拉伸试验、平面压缩、平面剪切、弯曲、层间剪切强度、断裂韧性等相关力学试验的通用试验标准、夹具和附件的选择等。接着,介绍了天氏欧森视频引伸计在实时测试工程中的同心度检测应用,包括论证力学测试过程中实时同心度偏差、计算方法、搭配对中系统实时微量调整同心偏移等。天氏欧森光学视频引伸计在高低温应用方面,有效使用温度为,高分子材料(-150度至280度)、金属材料和复合材料(-150度至600度)等报告人:中国航发北京航空材料研究院检测研究中心王雅娜博士报告题目:复合材料ENF试验Ⅱ型层间断裂韧性数据处理方法综述复合材料层板结构层间较弱,分层易于发生,王雅娜通过对层间断裂韧性原理的计算推导,与大家分享了ENF试验Ⅱ型层间断裂韧性数据处理方法综述。结论表示,面积法和J积分法不受线弹性断裂力学的限制。柔度标定方法依靠试验数据的拟合确定柔度表达式,试验过程比基于梁理论的方法繁琐,被认为具有更高精度。在三种柔度标定方法中,CCI方法被认为是准确性和实用性的最佳组合。J积分法不依赖裂纹的观测,利用对ENF试验件梁截面旋转角度的测量,对裂纹长度在试验件宽度方向分布不均的情形具有显著的优势,是一种很有前景的方法。现场互动

  荣格复合材料应用高峰论坛已连续举办了九届,共汇聚了近千位业内人士的积极参与,成功地打造了复合材料行业技术交流的高端平台。第十届“2017复合材料技术创新应用研讨会”将于2017年7月20-21日在青岛隆重举行。本届论坛将进一步扩大会议规模,深度探讨复合材料在交通运输、储能防腐、航空航天、基础建设、船舶游艇、运动休闲、电子电器、生活用品等领域的创新应用实例。届时来自原材料、机械设备、制品或部件企业、用户企业等的精英将齐聚一堂,并新增“供需匹配交流”。加强复合材料生产商与用户间的合作与交流。您不容错过!参加对象:-复合材料用户企业(交通运输、储能防腐、航空航天、基础建设、船舶游艇、运动休闲、电子电器、生活用品等行业)-复合材料最终制品或部件企业-原材料企业(增强材料、树脂、夹芯材料、中间材料、辅助材料、纤维、树脂、模具生产用原辅材料)-设备及工具企业(纤维生产设备、纤维再加工和处理设备、树脂生产及处理设备、预浸料生产及处理设备、复合材料最终制品生产设备、辅助设备及工具、检测设备和仪器、模具及相关设备、切割设备、环保设备、热压罐及相关设备)-行业服务企业(研发/设计、测试、技术转让、工程、培训、软件开发、咨询、组织、其他专业服务)东南科仪届时将携带德国binder恒温恒湿箱、美国Brookfield博勒飞粘度计、美国爱色丽X-rite台式分光光度仪、瑞士梅特勒-托利多天平等大牌进口仪器登场,邀请您参加,东南科仪恭候您!

  HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.纳米纤维素表面处理对PMMA复合材料的性能影响研究【1.濮阳职业技术学院;2、河南大学濮阳工学院冯婷婷】纳米纤维素表面处理对PMMA复合材料的性能影响研究纳米纤维素表面处理对PMMA复合材料的性能影响研究上海和晟HS-TGA-101热重分析仪

  复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。为进一步促进全国各地高校、科研院所、企业等相关从业人员进行表征与检测技术交流,仪器信息网将于2020年6月15日举办“复合材料性能表征与评价”主题网络研讨会,邀请领域内杰出专家和业内人士围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来精彩报告,并为参会人员搭建网络互动平台进行学术交流。(报名听会链接)专家介绍程小全,北京航空航天大学教授,实验室主任。1987年从西北工业大学飞机系毕业后分配到中国直升机设计研究所升力系统室,1992年入北京航空航天大学飞行器设计专业上研究生,1998年获工学博士学位。2000年9月出站后到北京航空航天大学工作至今。已有32年从事复合材料结构设计与试验研究与教学工作的经历。现任中国航空学会失效分析分会委员,《高科技纤维与应用》编委,中国材料与试验团体标准委员会(CSTM)航空专业领域委员,中国航空工业集团公司/中国航空发动机集团有限公司物理冶金人员资格鉴定委员会委员。先后承担过国家863、国家重大专项、国家自然基金等科研项目150多项,以及“985工程”学科建设任务。在国内外重要学术期刊和国际会议上发表论文200余篇、著作10部、获批专利5项。获国防科工委国防科学技术奖二等奖一项、中航工业集团科学技术奖三等奖一项、中国产学研合作创新与促进奖优秀奖一项、中国发明合作创新成果奖一项。报告题目:《湿热环境下复合材料机械连接结构破坏行为》报告摘要:由于设计及使用维护的限制,机械连接成为复合材料结构中不可缺少的关键环节。随着多功能、多用途飞行器的发展,对复合材料机械连接结构在复杂环境中的承载能力提出新的要求,其中吸湿和高温环境的影响最为显著。湿热环境对复合材料机械连接结构机械性能的必须加以关注。本报告将介绍碳纤维复合材料连接结构在常温干态、常温湿态、高温干态和高温湿态等四种环境条件下的拉伸挤压力学特性,通过试验和数值模拟方法给出了单钉双搭、单搭连接结构的拉伸破坏行为和损伤机理,分析了湿热环境对复合材料机械连接结构性能的影响。陈新文,中国航发北京航空材料研究院检测研究中心高级工程师,非金属及复合材料力学性能专业团队负责人。从事复合材料层合板、夹层结构、陶瓷基复合材料、有机玻璃、橡胶、胶黏剂等航空材料的力学性能表征和测试技术研究工作20多年。曾负责多项重点型号任务,为航空各型飞机非金属及复合材料结构研制、强度设计、定寿等提供了试验技术和力学性能数据支持。曾获奖和立功多次,发表文章近20篇,参与书籍《航空材料的力学行为》、《航空材料力学检测》、《先进复合材料技术导论》等的编写,制定企业标准15项,国家级标准6项。报告题目:《聚合物基复合材料疲劳试验方法》报告摘要:概述了开展复合材料疲劳试验的目的,从疲劳S-N曲线、条件疲劳极限、试验频率、迟滞效应、刚度变化和失效模式几个方面阐述了聚合物基复合材料的疲劳行为,比较分析了国内外聚合物基复合材料疲劳标准试验方法,指出了每个标准试验方法存在的技术缺陷,最后给出了疲劳试验方法改进的方向。包亦望,中国建材检验认证集团股份有限公司总工程师,绿色建筑材料国家重点实验室学术带头人,兼任全国工业陶瓷标委会副主任委员、中国硅酸盐学会测试技术分会秘书长。先后获得德国洪堡基金和国家杰出青年基金;入选国家跨世纪“百千万人才工程”和中国科学院“百人计划”项目;被授予有重要贡献中青年专家,享受国务院政府特殊津贴;荣获全国留学回国人员成就奖和英国皇家工程院“DistinguishedVisitingFellow”称号。在陶瓷与玻璃等脆性材料的力学性能评价技术和材料优化设计、脆性材料的强度与断裂理论以及脆性材料的可靠性和寿命预测等方面有丰富经验和创新,特别在陶瓷和玻璃的高温和常温力学性能评价,建筑玻璃风险诊断与玻璃器件失效分析研究方面居国内领先水平,在结构陶瓷的强度理论、断裂力学、脆性材料的实验方法和测试技术等研究领域做出了突出贡献。报告题目:《陶瓷涂层膨胀系数与残余应力测定》报告内容正在准备中。白瑞祥,大连理工大学工程力学系副教授,博士生导师,工业装备结构分析国家重点实验室固定人员。中国复合材料学会第六届、第七届理事,入选辽宁省百千万人才工程。主要研究方向包括先进材料的细观力学分析和设计,含损伤工程结构物的损伤和承载能力,复合材料结构动力学与故障诊断,复合材料工程结构分析与数值仿真,含损伤工程结构物修复和强化机理。承担和参与国家973课题、国家变革性技术课题、国家自然科学基金重点项目及面上项目多项,近年来负责国家大飞机和探月等航空航天工程中复合材料结构的失效行为检测和数值仿真课题二十余项。发表学术论文190余篇,SCI检索论文40余篇。报告题目:《基于分级测试数据校验的大型复合材料结构失效行为的预测方法》报告摘要:针对大型复合材料结构的选型和验证试验周期长,费用高,优化设计难等问题,提出了一种基于分级测试数据校验的大型复合材料结构失效行为的预测方法,将该方法用于大型复杂复合材料选型和参数优化设计,可极大提高选型和优化设计效率。由于大型复杂的复合材料结构,设计参数多,结构失效模式丰富,在采用数值方法预测结构承载能力时计算模型庞大、引入的损伤演化判据、材料强度准则及响应材料参数过多、同时还需考虑制造缺陷、分层损伤和界面损伤扩展以及接触、几何大变形等行为,导致多重非线性耦合,使计算难于收敛。采用基于分级测试数据校验的大型复合材料结构失效行为的预测方法,可以通过将损伤失效模式进行分类,通过材料级和结构级小规模测试获得材料损伤断裂参数,并用于校正结构级数值仿真模型的精度,进一步结合整体-局部建模分析方法,首先预测出结构主控失效模式,进而建立一个只考虑主控失效模式的解耦模型对整体结构进行失效行为预测,提高了大型复杂复合材料结构的预测精度和计算收敛性。周立明,吉林大学副教授,博士生导师。主要从事计算复合材料力学研究,提出了力-热-电-磁多物理场耦合光滑有限元法,解决了磁电弹复合材料有限元求解精度低的难题。自主研发了基于MATLAB平台的各类光滑有限元求解程序,同时从事微纳机械力学和多尺度复合材料、机械结构力学测试与计算方法等方面的研究工作。主持各类国家级项目、省部级项目与企业项目8项。2019年以来在ComposSciTechnol等刊物上发表SCI论文15篇。国际权威学术期刊《CompositeStructures》发表的struct.2018.09.074进入ESI(1%)高被引论文之列,并被加拿大著名科研机构AdvancesinEngineering遴选为关键科学文章。获授权发明专利1项,EI论文20篇,软件著作权25项。担任ComposPartB-Eng、ComposStruct、ChineseJAeronaut等期刊审稿人。报告内容正在准备中。黄培,博士,重庆大学航空航天学院讲师,主要从事纳米材料和复合材料的制备及应用研究。目前,主持和参与国家自然基金项目6项,横向合作项目2项,发表SCI论文23篇,其中以第一或通讯作者发表在ACSAppliedMaterials&Interfaces、Chemsuschem、Nanoscale等SCI论文15篇。报告题目:《特种复合材料的研究》报告摘要:复合材料因其很强的可设计性,在汽车、航空航天、智能设备等领域有非常巨大的应用潜力。这里,我主要介绍我们课题组在连续性纤维增强、短碳纤维增强以及多功能复合材料方面的研究概况。刘文广,毕业于东北林业大学,珀金埃尔默企业管理(上海)有限公司材料表征产品线技术支持,主要负责分子光谱、热分析仪器以及联用分析设备的应用支持,拥有7年以上的高分子材料分析经验。报告题目:《面向未来——联用技术在材料表征中的应用》报告摘要:(1)在新时代背景下,联用分析技术的发展与特点;(2)PerkinElmer在材料表征领域的联用方案;(3)联用分析技术的应用案例。参会方式(手机电脑均可参会)1、官网报名(点击链接免费报名听会);2、报名成功,通过审核后您将收到通知;3、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。扫一扫,报名听会

  5月13日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南。指南中明确:2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕高性能高分子材料及其复合材料、高温与特种金属结构材料、轻质高强金属及其复合材料、先进结构陶瓷与陶瓷基复合材料、先进工程结构材料、结构材料制备加工与评价新技术、基于材料基因工程的结构与复合材料7个技术方向。按照“基础前沿技术、共性关键技术、示范应用”三个层面,拟启动37个项目,拟安排国拨经费6.32亿元。其中,拟部署9个青年科学家项目,拟安排国拨经费3600万元,每个项目400万元。1.高性能高分子材料及其复合材料1.1高性能全芳香族纤维系列化与规模化制备关键技术(共性关键技术)研究内容:针对航空航天、武器装备等亟需的高强高韧结构材料应用需求,开展高性能全芳香族纤维制备关键技术及其应用研究。揭示大分子刚性链结构、纤维纺丝成型、凝聚态及其性能之间的内在规律,攻克全芳香族纤维制备共性科学问题;研究高强/高模芳纶纤维成型和热处理工艺,突破制备关键制备技术及成套装备;研究高伸长耐高温芳纶III纤维、芳纶纸及其蜂窝应用技术;探讨高性能液晶纺丝聚芳酯聚合物结构设计、固态缩聚反应动力学和纤维冷却成型机理,攻克聚芳酯纤维制备关键技术。1.2面向高端应用的阻燃高分子材料关键技术开发(共性关键技术)研究内容:面向5G通讯和轨道交通等高端制造业的需求,形成一批具有国际领先水平和自主知识产权的合成树脂材料及应用技术。重点开发PCB的无卤高阻燃、高Tg、低介电性能的环氧树脂;高阻燃耐老化热塑性弹性体TPE和聚脲弹性体无卤阻燃技术及应用;研发本征阻燃高温炭化不熔滴聚酯和低热释放本征阻燃聚碳酸酯合成技术;本征阻燃尼龙66工程化制备及其应用,完成万吨级规模化生产与应用示范。1.3低成本生物基工程塑料的制备与产业化(共性关键技术)研究内容:面向生物基高分子材料成本高和高性能工程塑料牌号少的问题,集中开发低成本生物基呋喃二甲酸(FDCA)、异山梨糖醇的制备技术;开发1,4-环己烷二甲醇(CHDM)和2,2,4,4-四甲基环丁二醇(CBDO)的国产化制备技术,基于生物基单体和新型单体开发PEF、PCF、PIF和PETG等生物基聚酯以及PIC、PCIC等生物基聚碳酸酯,从单体、聚合物到后端应用全链条研究。精细调控产品结构,研究产品的耐温性能、力学性能、阻隔性能等,开发不低于8种高性能聚酯和聚碳酸酯产品,并在包装领域得到应用。2.高温与特种金属结构材料2.1高温合金纯净化与难变形薄壁异形锻件制备技术(共性关键技术)研究内容:针对国产高温合金冶金质量差、材料综合利用率低、力学性能波动大等问题,研究镍基高温合金纯净熔炼、返回料处理和再利用技术,返回料与全新料混合重熔工艺;开发难变形高温合金成分优化及纯净熔炼、铸锭均匀化热处理、合金铸锭均质开坯、棒料细晶锻制、大型薄壁异形环形件整体制备等工艺技术,建立合金工艺与成分、组织和性能的影响关系,实现高温合金棒材和锻件组织均匀性和性能一致性的优化控制,完成合金制备工艺、材料与构件质量评估及在先进能源动力装备的考核验证。2.2高品质TiAl合金粉末制备及3D打印关键技术(共性关键技术)研究内容:针对电子束3D打印所需的低氧含量球形TiAl合金粉末,研究铝元素挥发、粉末球形度差、空心粉高问题,突破工业化生产球形TiAl合金粉末和工业化TiAl构件增材制造关键技术;开展增材制造TiAl合金的材料—工艺—组织—缺陷—性能一体化系统研究及典型服役性能测试,突破构件增材制造工艺及性能控制关键技术,掌握包括材料、工艺、组织调控、性能特征及典型应用,为新一代航空发动机高温关键构件制造及工业化应用提供技术支撑。2.3光热发电用耐高温熔盐特种合金研制与应用(示范应用)研究内容:针对太阳能光热发电产业低成本高效发电可持续发展需求,以下一代低成本高效超临界二氧化碳光热发电系统中耐高温氯化物混合熔盐特种金属材料及其制造技术为研究对象,研究耐高温不锈钢、高温合金板材及其焊接界面在高温氯化物、硝酸盐中的腐蚀机理和服役寿命预测技术,研究满足氯化物和硝酸盐熔盐发电系统用的耐高温不锈钢、高温合金板材成分和组织设计及其批量制造技术,开发耐高温熔盐不锈钢、高温合金成型和焊接行为及其先进制备技术,发展高温合金长寿命高吸收率吸热涂层,实现高性能不锈钢、高温合金产品开发及应用示范。2.4海洋工程及船用高端铜合金材料(共性关键技术)研究内容:针对舰船和海洋装备泵体、管路及阀门等耐蚀性差、服役寿命短、高端材料依靠进口的问题,研究海洋工程及船用新型高性能铜合金材料设计、成分—组织—工艺内禀关系、腐蚀行为及耐蚀机理,开发耐高流速海水冲刷型铜合金承压铸件制备、超大口径耐蚀铜合金管材加工及管附件成形、海洋油气开采用高耐磨高耐蚀铜合金管棒材加工及热处理组织性能调控等高质量低成本工业化制造技术,开展产品应用技术研究,实现高端铜合金典型产品示范应用。3.轻质高强金属及其复合材料3.1苛刻环境能源井钻采用高性能钛合金管材研究开发及应用(示范应用)研究内容:针对我国油气、可燃冰等能源钻采高耐蚀和轻量化的紧迫需求,研究苛刻环境下高强韧耐蚀钛合金多相组织强韧化、抗疲劳机理,以及高温、高压、腐蚀、疲劳等服役环境下材料损伤及失效机理;建立服役环境适应性材料设计方法及油气井钻采用钛合金钻杆、油套管服役性能适用性评价方法;开发高性能大规格钛合金无缝管材成套工艺技术及关键应用技术;制定专用标准规范,开展苛刻服役条件下应用研究,实现工业化规模稳定生产,在典型应用场景实现示范应用。3.2先进铝合金高效加工及高综合性能研究(共性关键技术)研究内容:针对汽车、飞行器以及船舶等提速减重、绿色制造的迫切需求,开展以铸代锻、整体成型、短流程、低排放的高效加工技术研究,研发高综合性能的先进铝合金材料;开展先进铝合金材料综合性能评价及加工技术效能评价,形成铸锻一体成型的新型高综合性能铝合金高效加工技术,将铸造、增材制造等铝合金提升到变形铝合金强度水平。3.3高性能镁合金大型铸/锻件成形与应用(共性关键技术)研究内容:针对商用车、高速列车、航空航天等领域的轻量化紧迫需求,探索热—力耦合条件下大容积镁合金凝固与形变过程中成分—组织—性能演变规律与调控技术,开发适合于大型铸/锻件的高性能镁合金材料;研究大型镁合金铸/锻件组织均匀化与缺陷调控机理,开发高致密度铸造成形技术、大体积熔体清洁传输及半连续铸造技术、挤锻复合一体成形技术;开展大型承载件的结构设计、产品制造、腐蚀防护及使役性能评价等技术研究,并实现示范验证与规模化应用。3.4新型结构功能一体化镁合金变形加工材制造技术(共性关键技术)研究内容:针对航空航天、轨道交通、能源采掘、电子通信等重大装备升级换代的紧迫需求,研究新型强化相对镁合金力学性能与功能特性的协同调控机理,发展新型结构功能一体化镁合金材料与新型非对称加工技术,开发大规格高强阻尼镁合金环件、宽幅阻燃镁合金型材、高强可溶镁合金管材、高强电磁屏蔽/高导热镁合金板材的工业化制造成套技术及关键应用技术,并实现典型示范应用。3.5极端环境特种服役构件用构型化金属基复合材料(示范应用)研究内容:针对航空航天特种服役构件用耐疲劳高强韧铝基复合材料、耐热高强韧钛基复合材料以及岛礁建设与隧道掘进等重大工程用高耐磨钢铁基复合材料,开发铝、钛基复合材料用合金粉末的低成本制备技术,解决传统制粉技术细粉出粉率低、氧含量高等技术难题,实现高端铝、钛合金粉末规模化制备。探索复合材料体系—复合构型设计—复合技术—宏微观性能耦合机制与协同精确控制机理,开发跨尺度分级复合构型的定位控制、界面效应与组织精确调控、性能及质量稳定性控制、大型结构件塑性加工与热处理、低成本批量制备等产业化关键技术,开展特种服役性能评价、全寿命预测评估与应用技术研究,建立相关标准规范,实现其稳定化生产与应用示范。3.6高端装备用高强轻质、高强高导金属层状复合材料研制及应用(示范应用)研究内容:针对高速列车、先进飞机、防护车辆等高端装备轻量化、高性能化的迫切需求,研究高性能多层铝合金板材、铜包铝合金等层状复合材料界面结构与复合机理,探索应用人工智能、大数据等前沿技术优化界面调控的理论与方法,阐明铝合金复合板材的叠层结构、复合界面、陶瓷颗粒第二相等在高应变速率下抵抗冲击的作用机理;开发防护车辆、特种装备等用抗冲击多层高强铝合金复合板材的工业化制造成套技术及复合板材的性能评价等关键应用技术;开发高速列车、航空航天、电力电器等高端装备用铜包铝合金复合材料短流程高效工业化生产成套技术及多场景应用关键技术,实现在高端装备上的示范应用。4.先进结构陶瓷与陶瓷基复合材料4.1高端合金制造及钢铁冶金用关键结构陶瓷材料开发及应用(示范应用)研究内容:面向冶金产业提升的发展需求,研究高端合金制造及钢铁新技术领域用关键结构陶瓷材料组分设计与制备技术,开发高品质高温合金制备用结构陶瓷材料、冶金领域用高效节能硼化锆陶瓷电极、薄带连铸用结构功能一体化陶瓷材料的规模化生产工艺,开展应用评价技术研究,建立规模化生产线,研制关键生产设备,制定制备及检测标准。4.2低面密度空间轻量化碳化硅光学—结构一体化构件制备(基础前沿技术)研究内容:针对空间遥感光学系统的应用需求,研究低面密度空间轻量化碳化硅光学—结构一体化构件的结构拓扑设计,开展复杂形状碳化硅构件的增材制造等新技术、新工艺研究,开发低面密度复杂形状碳化硅构件的近净尺寸成型与致密化烧结技术,开展低面密度空间轻量化碳化硅光学—结构一体化构件的光学加工与环境模拟试验研究,实现满足空间遥感光学成像要求的低面密度碳化硅光学—结构一体化构件材料制备。4.3高性能硅氧基纤维及制品的结构设计与产业化关键技术(示范应用)研究内容:针对高效隔热防护服、高强芯片、高保真通讯电缆等对高性能硅氧基纤维及制品的应用需求,研究硅氧前驱体化学组成、结构重组、多级微纳结构演变对纤维成型的影响规律,攻克硅氧基无机制品高温均匀化熔制拉丝关键技术,开发高强玻璃纤维;研究前驱体分子缩聚和纳米/微米多级孔组装结构演变对孔结构形成的影响规律,突破多孔玻璃纤维常温挤出成型技术,开发低介电、低热导、轻质柔性玻璃纤维;研究模拟月球和火星环境的微重力、高真空环境下玄武岩材料熔制技术及深空环境对纤维成型的作用机制,开发高性能连续玄武岩纤维;开展高性能玻璃纤维及复合制品产业化示范,形成千吨级生产线;开发极端环境的模块化连续玄武岩纤维成型装置,实现微重力下自主成纤中试。5.先进工程结构材料5.1海洋建筑结构用耐蚀钢及防护技术(共性关键技术)研究内容:针对海洋建筑结构对长寿命钢铁材料的需求,研究高盐雾、高湿热、强辐射等严酷海洋环境下,钢铁结构材料的失效机理与材料设计准则;防腐涂层的成分设计、制备技术、涂装工艺及腐蚀评价;耐蚀钢板/钢筋的成分设计、制备技术、焊接技术及腐蚀评价;复合钢板的制备技术、焊接技术及腐蚀评价;海洋建筑结构用钢的服役评价、设计规范及示范应用。开展免维护海洋结构用低合金耐蚀钢板及复合钢板的成分设计及制备技术研究;开展防腐涂层设计与制备技术、钢板与涂层耦合耐蚀机理研究;研究低成本耐蚀钢筋母材与覆层协同耐蚀机制与制备技术;开展耐蚀钢连接技术研究;建立复杂海洋环境钢材及构件的服役评价及全寿命周期预测方法。6.结构材料制备加工与评价新技术6.1金刚石超硬复合材料制品增材制造技术(示范应用)研究内容:围绕深海/深井勘探与页岩气开采、高端芯片制造等国家重大工程对长寿命、高速、高精度超硬材料制品的需求,开展高性能金刚石刀具、磨具和钻具等结构设计和增材制造技术研究,结合新型金刚石超硬复合材料工具宏观外形和微观异质结构的理论设计和数值模拟,重点突破增材制造用含金刚石的球形复合粉体关键制备技术和含超硬颗粒的多材料增材制造关键技术,完成典型工况条件下服役性能的评价。6.2高强轻质金属结构材料精密注射成形技术(共性关键技术)研究内容:针对5G基站、消费电子、无人机或机器人等领域对高强轻质结构零件的迫切需求,研究粉末冶金高强轻质金属结构材料及其注射成形工艺过程精确控制原理与方法、小型复杂构件精密成形、低残留粘结剂设计及杂质元素控制、强化烧结致密化及合金的强韧化。重点突破粉末冶金高强轻质钢设计及其粉末制备、低成本近球形钛合金微细粉末制备、可烧结高强粉末冶金铝合金及近球形微细粉末制备、组织性能精确调控等关键技术,实现高强轻质金属复杂形状制品的稳定化宏量生产。6.3大型复杂薄壁高端金属铸件智能液态精密成型技术与应用(共性关键技术)研究内容:面向大涵道比涡扇航空发动机、新能源汽车等对超大型复杂薄壁高端金属铸件的需求,打破传统“经验+试错法”研发模式,探索基于集成计算材料工程、大数据与人工智能相结合的金属铸件智能液态精密成型关键技术。研究超大型复杂薄壁金属铸件凝固过程的组织演变与缺陷形成机理,建立多物理场耦合作用下铸件组织与缺陷的预测模型,发展数据驱动的材料综合性能与铸造工艺多因素智能化寻优方法,形成金属铸件智能液态精密成型数字孪生模型及系统。6.4复杂工况下冶金领域关键部件表面工程技术与应用(示范应用)研究内容:针对冶金领域高温、重载、高磨损等复杂工况对关键部件表面防护技术的迫切需求,开展复合增强表面工程材料及涂镀层结构的理性设计,开发高效率、高性能激光熔覆、堆焊、冷喷涂、复合镀等技术及多技术结合的复合表面工程技术,攻克复杂工况下冶金领域关键部件表面耐高温、耐磨损、抗疲劳涂镀层制备的关键技术,开展其服役性能评价和寿命预测,并应用于挤压芯棒、结晶器、除鳞辊等典型部件,在大型钢铁冶金企业得到示范应用。7.基于材料基因工程的结构与复合材料7.1结构材料多时空大尺寸跨尺度高通量表征技术(基础前沿技术)研究内容:针对高温合金、轻合金和高性能复合材料等的工程化需求,基于先进电子、离子、光子和中子光源,集成多场原位实验与多平台关联分析技术,研发晶粒、组成相、相界面、化学元素、晶体缺陷与织构的多时空跨尺度高通量表征、智能分析与快速评价技术,研发大尺寸多尺度组织结构和宏微观力学性能高通量表征技术与试验装备,实现典型工程化结构材料制备、加工和服役过程中内部组织结构的动态演化和交互作用规律的高效研究,建立材料成分—组织—性能的多尺度统计映射关系与定量模型,在典型结构材料的改性、工艺优化和服役评价等方面得到实际应用。7.2金属结构材料服役行为智能化高效评价技术与应用(共性关键技术)研究内容:针对金属结构材料腐蚀、疲劳、蠕变等服役性能评价耗时长、成本高的问题,通过多物理场耦合、宏微观跨尺度损伤建模,融合智能传感、信号处理、机器学习等现代技术,研发材料服役性能物理实验与模拟仿真实时交互和数字孪生的智能化高效评价技术和装置;研究金属结构材料数据虚实映射与数据交互规则,建立数据关联平台,加速材料服役性能数据的积累,形成关键金属结构材料安全评价数据系统;集成结构模型与损伤模型,发展基于大数据技术的金属结构材料服役安全评价和寿命预测的新技术和新方法,并获得实际应用。7.3基于材料基因工程的新型高温涂层优化设计研发(共性关键技术)研究内容:针对海上动力装备用热端部件及其海洋腐蚀环境,发展高温涂层的高通量制备技术,开展新型高性能高温涂层成分和组织结构的高通量实验筛选和优化研究;研发涂层—基体界面结构和性能多尺度高效模拟设计和预测技术,研发涂层高温力学性能、界面强度、残余应力和高温腐蚀性能等的高通量实验技术,开展涂层与界面性能和工艺优化研究;综合利用材料基因工程关键技术,研发出具有重要工程应用前景的新型超高温、耐腐蚀涂层。7.4高强韧金属基复合材料高通量近净形制备与应用(共性关键技术)研究内容:针对航空航天领域高强韧金属基复合材料应用需求,围绕非连续增强金属基复合材料强韧性失配及复杂构件成形加工周期长、成本高、材料利用率低的突出问题,结合利用材料基因工程思想和近净形制备技术原理,研发铝基、钛基复合材料高通量近净形制备技术及其高通量表征技术;测试和采集基体/增强相界面物理化学数据,建立基体/增强相界面热力学和动力学物性数据库;研究铝基、钛基复合材料成分—构型—工艺—界面—性能交互关联集成计算技术,实现材料体系与构型及其近净形制备工艺方案与参数的高效同步优化,并在航空航天等领域得到工程示范应用。7.5先进制造流程生产汽车用钢集成设计与工程应用(示范应用)研究内容:鉴于钢铁工业绿色制造、生态发展对先进制造流程生产高端钢铁材料的迫切需求,基于材料基因工程的思想,针对近终形流程生产汽车用钢,采用多场耦合和跨尺度计算技术,集成材料开发与产品应用的跨尺度计算模型,构建一体化集成计算平台,建立材料基础数据和工艺、产品数据库,开发基于数据挖掘和强化机制的组织性能定量关系模型,实现产品成分—工艺—组织—性能的精准预报;开展在近终形流程生产汽车用钢的示范应用,研制出代表性产品并实现工程应用。7.6增材制造用高性能高温合金集成设计与制备(共性关键技术)研究内容:针对航空发动机、高超声速飞行器、重载火箭等国家大型工程所需高温合金精密构件服役特点和增材制造物理冶金特点,应用材料基因工程理念,发展多层次跨尺度计算方法和材料大数据技术,形成增材制造用高性能高温合金的高效计算设计方法、增材制造全流程模拟仿真技术与机器学习技术,结合高通量制备技术和快速表征技术,建立增材制造用高性能高温合金的材料基因工程专用数据库;发展适合高温合金增材制造工艺特性的机器学习、数据挖掘、可视化模拟等技术,开展增材制造用高温合金高效设计与全流程工艺优化的研究工作,实现先进高温合金高端精密构件的组织与尺寸精密化控制,并在航空航天等领域得到工程示范应用。7.7极端服役条件用轻质耐高温部件高通量评价与优化设计(共性关键技术)研究内容:发展基于大数据分析和数据挖掘的高温钛合金、钛铝金属间化合物等轻质耐高温部件组织结构与疲劳、蠕变等关键性能的定量预测模型;研制实时瞬态衍射、原位成像表征装置,发展三维无损检测高效分析技术;研究高温腐蚀环境下组织结构演化和性能退化机理、高温和循环载荷等多因素耦合作用下的损伤累积及高通量评价与寿命预测技术;基于极端环境服役性能需求,利用机器学习和数据挖掘技术,实现轻质耐高温材料的成分、组织、制备工艺、服役性能的高效优化,并在航空、航天、核能等领域实现在极端服役条件下工程示范应用。8.青年科学家项目8.1车载复合材料LNG高压气瓶制造基础及应用技术研究内容:针对车载复合材料液化天然气(liquefiednaturalgas,LNG)高压气瓶的制造与应用,研究LNG介质相容的树脂基复合材料体系设计与制备;耐极端环境复合材料LNG气瓶结构设计技术;复合材料LNG高压气瓶抗渗漏、抗漏热和抗振动技术;复合材料LNG高压气瓶制造技术;复合材料LNG高压气瓶的性能评价技术。8.2新一代结构功能一体化泡沫的制备和应用研究内容:面向结构功能一体化泡沫技术迭代的迫切需求,开发具备负泊松比和高耐火保温等功能的泡沫,主要针对新型多级结构负泊松比结构泡沫材料、耐高温聚酰亚胺泡沫和高温可发泡防火材料等开展攻关,并开展其复合材料研究,在结构支撑、保温隔热等领域得到应用。8.3单晶高温合金先进定向凝固技术及其精确模拟研究内容:针对当前航空发动机单晶涡轮叶片生产合格率低、冶金缺陷频发的现状,开展单晶高温合金及叶片高温度梯度液态金属冷却(LMC)定向凝固技术研究,突破LMC技术中动态隔热层配置、晶体取向控制、模壳制备、低熔点金属污染控制等关键技术,实现LMC技术的多场耦合、多尺度精确模拟,研究复杂结构单晶叶片在高梯度定向凝固中的缺陷形成、演化机理,发展缺陷控制技术。8.4海洋油气钻采关键部件用高强高韧合金研究内容:针对海洋油气随钻测量和定向钻井、海底井口设备关键部件主要依靠进口问题,开展时效硬化型高强韧镍基、铁镍基耐蚀合金设计、高纯净低偏析冶金、强韧化机理、应力腐蚀疲劳失效寿命评估理论与方法等基础共性技术和产业化关键技术研究,实现高强韧、大规格、高均质耐蚀合金和超高强度高耐蚀合金稳定批量生产和工程化应用。8.5基于增材制造技术的超轻型碳化硅复合材料光学部件制造研究内容:面向空间光学系统轻量化的发展需求,研究新型超轻型碳化硅复合材料光学部件预制体增材制造用粉体原料的设计与高通量制备技术;开发基于增材制造技术的碳化硅复合材料光学部件基体成型与致密化技术;开发基于增材制造技术的碳化硅复合材料光学部件表面致密层制备技术;开展超轻型碳化硅复合材料光学部件的加工验证研究。8.6基于激光技术的材料服役行为多维度检测技术和装备研究内容:针对核电、海工等领域极端条件下结构材料服役性能远程在线、多维度、智能化检测的发展需求,开展基于激光技术的光谱、表面声波、超声或多种方法融合的材料组分、结构特性、力学性能、缺陷特征检测新原理和新方法研究,发展极端条件下结构材料服役行为的实时、原位、无损监检测技术,研制与材料基因工程大数据、人工智能分析算法和机器人技术深度融合的材料多维、多尺度在线监检测原型装置,实现多场耦合极端环境下材料多层次、多维度服役性能原位无损在线超高刚度镁基复合材料的集成计算设计与制备研究内容:以航空、航天或高铁领域为应用场景,针对超高刚度镁基复合材料特点,发展高刚度镁合金集成材料计算软件和镁基复合材料高通量实验技术,开展基于弹性变形抗力提升的镁合金基体成分设计和增强体种类、尺寸和分布形态对镁合金刚度和强韧性影响规律的研究工作,研发多尺度增强体复合构型强化的镁合金材料高效制备与组织调控技术,建立高刚度镁基复合材料及其典型构件的全流程制备技术,并实现在重大工程中的应用验证。8.8增材制造先进金属材料的实时表征技术及应用研究内容:研发基于同步辐射光源的原位表征技术与装备,动态捕捉增材制造过程中高温下微秒级时间尺度和微米级局域空间内的相变和开裂;通过高通量的样品设计和多参量综合表征手段,揭示动态非平衡制备过程中材料组织结构的演化和交互作用规律。面向典型高性能结构材料,揭示增材制造快速熔化凝固超常冶金过程对稳定相、材料组织结构和最终性能产生影响的因素,快速建立材料成分—工艺—结构—性能间量化关系数据库;结合材料信息学方法,发展增材制造工艺和材料性能高效优化软件,在典型增材制造材料的设计与优化中得到应用。8.9新一代抗低温耐腐蚀高强韧贝氏体轨道钢研究内容:针对低温下贝氏体钢中亚稳残余奥氏体易转变为脆性马氏体,增加贝氏体钢轨道安全服役隐患的问题,研究腐蚀、低温环境下贝氏体轨道钢(含钢轨和辙叉)的失效破坏机制,建立贝氏体轨道钢“夹杂物特性—组织结构—常规性能—服役条件—失效方式及寿命评估”数据库,开发适用于腐蚀、低温环境的新一代高强韧性、长寿命贝氏体轨道钢及其冶金全流程制造关键技术。近期会议推荐:【复合材料性能表征与评价网络研讨会】该网络会议对听众免费,会议日程及报名二维码如下:

  近日,科技部发布“十四五”国家重点研发计划“先进结构与复合材料”重点专项2022年度项目申报指南(征求意见稿),向社会征求意见和建议。根据征求意见稿,本专项2022年度拟支持项目及“揭榜挂帅”榜单如下:1.高性能高分子材料及其复合材料1.1大丝束碳纤维及复合材料低成本高效制备技术(典型应用示范)1.2特种工程塑料薄膜制备技术开发与产业化(共性关键技术)1.3耐苛刻使役环境合成橡胶制备技术及其产业化(共性关键技术)1.4生物基弹性体的制备与规模化应用(典型应用示范)1.5聚乳酸的规模化制备技术及关键单体丙交酯的一步法产业示范(典型应用示范)2.高温与特种金属结构材料2.1铸造高温合金返回料再利用技术与应用(共性关键技术)2.2高温合金大铸锭低偏析熔铸及大型构件整体制备技术(典型应用示范)2.3强疲劳载荷环境用超高强度钢(共性关键技术)2.4超低温工程装备用高强高韧特种合金研制及应用(典型应用示范)2.5耐超高温抗蠕变难熔金属材料及复杂构件制备技术(共性关键技术)2.6特种合金环形锻件控形控性一体化技术与应用示范(典型应用示范,江苏部省联动任务)3.轻质高强金属及其复合材料3.1钛合金返回料利用及高效短流程制备关键技术(共性关键技术)3.2空间装备用新型超高强韧及耐损伤铝合金(共性关键技术)3.3青海盐湖新型镁基材料及前端制造技术(共性关键技。

闽ICP备09035848号-1Copyright(C)2023-2024万向娱乐企业网站 txt地图 HTML地图 XML地图
友情链接: 木业有限公司